
P2P Bug Tracking with SD

http://syncwith.us

Jesse Vincent
Best Practical

jesse@bestpractical.com

Hi!

I’m Jesse (obra)

clkao and I own a small
software company

(Best Practical)

I’ve been making issue
trackers since 1995

 Our software
has some bugs

All software
has some bugs

(All software
 is made of bugs)

I spend a lot of time
on airplanes...

...and at conferences
with bad wifi

This is my first
conference at CMU

I need to keep track of
our bugs and our work

I’m the boss

I have no excuse for
not doing my work

I need to keep track of
our bugs and our work
even when I don’t have

Internet access

I’ve tried everything

Text files

Text files in
version control

IMAP Servers

RSS Feeds

Running RT on
my laptop

Keeping browsers open

Nothing was quite right

So we built SD

SD is a Bug Tracker

SD is a Distributed
Bug Tracker

Principles of distributed
computing

The network is reliable

Latency is zero

Bandwidth is infinite

The network is secure

Transport cost is zero

The network is
homogeneous

Topology doesn't
change

There is one
administrator

Principles of distributed
computing

Principles of distributed
computingFallacies

Those are all LIES

The network is not
reliable

Latency hurts

Bandwidth is always
a problem

(Except at this
conference)

The network is
insecure

Topology is
unpredictable

and fluid

There is no
administrator

(But there are many
people who think

they’re administrators)

Transport
costs money

The network is
heterogeneous

I didn’t make those up

Bill Joy, Tom Lyon and
James Gosling did

They missed one

Data is clean

SD is a distributed
system

SD runs locally

Not Here

SD plays well
with others

It syncs the way you do

Clone a project’s bug
database (over HTTP)

Work offline

Pull changesets from
anyone you work with

Publish your database
replica with rsync

Topology doesn’t
matter...

Don’t worry

It won’t break

SD learns how to
resolve each conflict...

...based on how
everyone else resolves it

Using SD (CLI)

Getting Started

SD Shell

$ sd

./

Getting help

$ sd help

Creating a new project

$ sd init

Project settings

$ sd settings

Config file

$ sd config

Mirroring a project

$ sd clone

Publishing

$ sd publish

Pulling

$ sd pull

Create a bug

$ sd ticket create

Listing bugs

$ sd ticket list

Show a bug

$ sd ticket show

Update a bug

$ sd ticket update

Log

$ sd log

Git Integration

$ git sd

Using SD (Web)

Web? Isn’t SD an
offline tool?

Local microserver

$ sd browser

Home

Create a ticket

Search

Show a bug

Update a bug

Comments

History

Working with others

Working with others
(Using SD)

Any topology

It doesn’t matter who
you sync with

You get all the updates
eventually

Cloning

$ sd clone

clone makes a replica of
someone else’s

database

Pulling

$ sd pull

pull imports unseen
changes from another

database replica

Publishing

$ sd publish

publish writes out a
copy of your database

replica for sharing

(As SD changesets
and static HTML)

Hackathon mode
(using Bonjour)

Publish your replica

$ sd server

Pull updates

$ sd pull --local

Working with others
(Using other systems)

But you already have a
bug tracker?

No Problem!

I use at least
two others.

I wrote at least
two others.

We designed SD talk to
foreign bug trackers

RT

(RT::Client::REST)

Hiveminder

(Net::Jifty)

Trac

(Net::Trac)

Google Code

(Net::Google::Code)

GitHub

(Net::GitHub)

Redmine
(Read-only for now)

(Net::Redmine)

Want to help with
Bugzilla, Jira, FogBugz or

something else?

Star topology

One SD node acts as a
gateway

Clone

$ sd clone

Clone from Google Code

$ sd clone --from gcode:k9mail

Clone from RT

$ sd clone --from "rt:https://rt.cpan.org|DBI|"

Clone from Trac

$ sd clone --from trac:https://trac.parrot.org/parrot

Clone from GitHub

$ git sd clone --from github:miyagawa/remedie

SD reverse engineers a
database history

Pull

$ sd pull

SD reverse engineers a
partial database history

Push

$ sd push

SD figures out local
updates and sends

them upstream

(Then it does a bunch
of book-keeping)

Installing SD

It’s time to get SD
up and running

SD is in Perl

SD uses 45-90
CPAN modules

Are you afraid?

Are you afraid?

Don’t be

I have a novel idea for
a Perl application

One-tweet install.

I’m installing #SD (http://syncwith.us)
after seeing @obra’s talk at #YAPC!

80 bytes! I still have 60
to work with!

I’m installing #SD (http://syncwith.us)
after seeing @obra’s talk at #YAPC!

curl fsck.com/sd|perl;
export $PATH=~/sd/bin:$PATH; sd

You’ll need:

curl, perl 5.8, C compiler

You won’t need:

CPAN

You won’t need:

to answer prompts

You won’t need:

to fix dependencies

SD is in Perl

SD uses CPAN
modules.

This is a blessing.

This is a curse.

CPAN
=

Dependency Hell

When we first built
SD, we used anything

we thought was useful.

(The first version of SD
used a SVN backend)

The first ~useful
version of SD:

123 Dependencies

...one hour later

95 Dependencies

...another hour later

82 Dependencies

SD today

54 Dependencies

Only one needs a
compiler.

(rjbs: I’m sorry!
I promise I’ll switch

to Data::GUID soon)

Shipwright gives us
one-command install

curl fsck.com/sd|perl
export PATH=$PATH:~/sd/bin

What’s that do?

curl

perl

$ head /Library/WebServer/Documents/sd

open (my $tar,'|tar xz 2>/dev/null');
while (<DATA>) {
 print $tar $_;
}
close $tar;
exec("cd sd-build; bin/shipwright-builder \
 --install-base=$ENV{HOME}/sd");
__DATA__
?I?Isd-build.tar?<is?F???_1?䀌yH?"#ۿ${U???H?eH
...

Shipwright installs a few
Perl modules...

...in order

Scalar-List-Utils
String-BufferStack
Class-Accessor
Class-Data-Inheritable
Tree-DAG_Node
Test-Simple
Sub-Uplevel
Test-Exception
Array-Compare
Test-Warn
Template-Declare
URI
HTTP-Server-Simple
Params-Util
Class-Inspector
File-ShareDir
DBI
DBD-SQLite
HTML-Tagset
HTML-Parser
HTML-Tree
Crypt-SSLeay
JSON
YAML-Syck
JSON-XS
JSON-DWIW
JSON-Any
Mouse
Any-Moose
Compress-Raw-Zlib
Compress-Raw-Bzip2
IO-Compress
libwww-perl
HTTP-Response-Encoding
WWW-Mechanize

WWW-Mechanize-GZip
File-Slurp
Test-MockModule
Net-GitHub
MIME-Types
Class-Singleton
Params-Validate
version
ExtUtils-CBuilder
ExtUtils-ParseXS
Test-Harness
File-Temp
Module-Build
DateTime-TimeZone
List-MoreUtils
DateTime-Locale
DateTime
File-MMagic
Net-Google-Code
Term-ReadLine-Perl
Digest-SHA1
Digest-HMAC
Net-IP
Net-DNS
Net-Bonjour
TermReadKey
Data-UUID
XML-Atom-SimpleFeed
Digest-SHA
Exporter-Lite
IPC-Run3
MIME-Base64-URLSafe
Data-UUID-Base64URLSafe
Sub-Install
Data-OptList

Sub-Exporter
Path-Dispatcher
Module-Pluggable
Time-Progress
Carp-Assert
Proc-InvokeEditor
Test-HTTP-Server-Simple
Module-Refresh
Carp-Assert-More
Test-LongString
Test-WWW-Mechanize
Test-Script-Run
prophet.git
Devel-StackTrace
Exception-Class
Error
RT-Client-REST
Email-Address
YAML
Path-Class
Clone
Hash-Merge
UNIVERSAL-isa
UNIVERSAL-can
Test-MockObject
Net-Jifty
Lingua-EN-Inflect
Text-CSV
Net-Trac
boolean
Time-Piece
Test-MockTime
DateTime-Format-Natural
sd.git

(104 dists with our
sync plugins)

What’s wrong with SD?

$ sd clone --from http://fsck.com/~jesse/sd-bugs

Don’t want to
 install SD?

Point your browser at
http://fsck.com/~jesse/sd-bugs

What’s next?

Indexing

GPG-signed changesets

Actually releasing 1.0

Questions?

http://syncwith.us
jesse@bestpractical.com

Bonus Material

How to implement an
SD replica type

3 Classes

App::SD::Replica::
 Bugz
 Bugz::PullEncoder
 Bugz::PushEncoder

