
You can take the Hacker out
of Perl...

...but you can’t take the Perl
out of the hacker.

Laziness, Impatience and
Hubris on the Kindle

This talk contains almost no
Perl.

...and almost no Japanese.

I’m very sorry.

And no x86 ASM

I’m not sorry.

The Amazon Kindle

eBook Reader

eInk Screen

800x600; 16 levels of grey

No backlight

Looks great outside!

Good things about the Kindle

3G for 1-click shopping

250,000+ books to buy

(Most < USD10)

Newspaper, Magazine, Blog
subscriptions

Delivered every morning

$1-$10 each month

Email → eBook conversion

$0.10 for autodelivery

$FREE if you copy the result
by USB

Free Web Browser

Download .mobi, .prc, .azw,
.txt for free

“Experimental”

Means: We might start
charging money for this

NetFront 3.5

Basic CSS

Javascript

XmlHttpRequest

Free Wikipedia

Not “experimental”

Text to speech.

Minesweeper!

Bad things about the Kindle

DRM

When you buy books, they
are locked to the Kindle

Amazon lawyers went after
a tool to let you read non-
Amazon DRMed ebooks

(The same tool can help you
remove the DRM from
books Amazon sells you)

Limited eBook formats

I want to read PDFs

I want to read ePubs

I want to read Manga

Actually, I don’t read manga

But lots of my friends do

Surveillance

In the US, 3G includes GPS

The Kindle has a GPS

Device logs are sent to Amazon

Including many user actions

...like the websites you visit

...and what books you read

Appears to include GPS info

Amazon knows where you are

Lock-in

Designed to work only with
Amazon

3G use is free, but only while
Amazon likes you

Summary: The Kindle is an
“appliance”

You wouldn’t hack a book,
would you?

I got a Kindle to read books

I didn’t plan to hack it

I really wanted to read
books in other formats

I’m a sucker for sexy
platforms

And it was begging me

It’s a new toy.

I am going to hack it.

Laziness

http://igorsk.blogspot.com

Hidden debug commands

;debugOn

‘help

Hubris

“I can’t possibly brick my
Kindle with the keyboard,
right?”

So, I started typing
commands.

“‘usbNetwork” sounds
good.

...nothing happened

How about “‘usbQa’”?

It turned off the WIFI

..and turned off USB Disk
mode.

Impatience

I gave up

Sometimes laziness wins

An hour later, I rebooted my
Macbook Air

So I set up a DHCP server

Nothing...

sh-3.2# tcpdump -i en1
listening on en1, link-type EN10MB (Ethernet), capture size 96 bytes

[...]

12:36:15.238229 arp who-has 192.168.15.200 tell 192.168.15.244

Now my Kindle can tether
through my Macbook

I want to read other eBook
formats - attempt #1

The Kindle has a browser

I have a web server

Web based proxy

Small perl app

mobiperl

Perl 4

no strict;

no warnings;

global variables

hmm. no ePub support

Spent a weekend learning
how ePub format works

github.com/obra/
unsavory-epub-hacks

Slow. Annoying. Requires a
Server

Servers are evil

Hm.

Back to the drawing board

I want to read other eBook
formats - attempt #2

Let’s review what we know:

What’s inside the Kindle?

800x600 eInk screen

You know about the screen

Freescale iMX31

ARM1136JF-S

(Includes FPU)

+ Multimedia stuff

2 GB Flash

128 MB RAM

USB OTG + MicroUSB slot

Audio hardware

Keyboard

The Kindle sounds like a
computer, not a book

It MUST use some GPL code...

https://www.amazon.com/gp/help/
customer/display.html?inodeId=200203720

gplrelease.tar.gz

alsa-lib-1.0.13
alsa-lib-1.0.13_patch
alsa-utils-1.0.13
alsa-utils-1.0.13_patch
base-files-3.0.14.ipk
base-passwd_3.5.9
binutils-2.17.50.0.5
bonnie++-1.03c
bootchart-0.9
busybox-1.7.2
dosfstools-2.11
e2fsprogs-1.38
e2fsprogs-1.38_patch
fuse-2.7.1
fuse-2.7.1_link

gcc-4.1.2
glib-2.12.9
glibc-2.5
gst-plugins-base-0.10.17
gst-plugins-base-0.10.6
gstreamer-0.10.17
hotplug-2004_09_20
ifupdown_0.6.8
iptables-1.3.3
klibc-1.5
libol-0.3.18
linux-2.6.22-lab126
lrzsz-0.12.20
lzo-1.08
module-init-tools-3.2.2

module-init-tools-3.2.2_patch
monit-4.9
mtd-utils-1.0.0
picocom-1.4
powertop-1.10
procps-3.2.7
procps-3.2.7_patch
readline-4.3
syslog-ng-1.6.11
sysvinit-2.86
taglib-1.5
uboot-1.3.0-rc3
udev-112
util-linux-2.12r

Linux

I can work with this

But how do I get code onto it?

My friend nmap tells me...

The Kindle listens on a few
ports.

None of them love me at all

I guess I’ll need to take
matters into my own hands.

Hey, the Kindle has busybox

busybox has telnetd

Maybe I just need to install
/etc/rc5.d/S99telnetd

More research from
http://igorsk.blogspot.com

Kindle 1 update extractor

(Python script)

But I want to make new
updates...

I reverse engineered the
reverse engineering tool

Updates are a short header,
an MD5 and a tarball

...run through a trivial cipher

they’re not encrypted

The Kindle2 is a little
different than the Kindle1

It has different magic #s
in the update header

I waited for the first Kindle 2
“update.bin”

I grabbed its header

I built a new “update”

It installed one file

/etc/rc5.d/S99telnetd

/bin/busybox telnetd -p 2323

...nope.

I ran strings on the Kindle’s
busybox

No telnetd!

Where can I get a busybox
for the Kindle?

What else has a a similar
CPU?

My gPhone!

Lots of people built static
busybox for the gPhone

telnetd: take 2

login:

login: root
Password:
Login incorrect

/bin/sh
makes a better
/bin/login

125-6-81-160:ß jesse$ telnet kindle 2323
Trying 192.168.15.244...
Connected to kindle.
Escape character is '^Ü'.

/ # cat /etc/motd
###
N O T I C E * N O T I C E * N O T I C E #
###
Rootfs is mounted read-only. Invoke mntroot rw to
switch back to a writable rootfs.
###
/ #

What I found:

Most of /sbin is written in sh

Fun stuff in /proc

/proc/config.gz

#
Automatically generated make config: don't edit
Linux kernel version: 2.6.22.19
Mon Mar 2 12:13:07 2009
#
CONFIG_ARM=y
CONFIG_SYS_SUPPORTS_APM_EMULATION=y
CONFIG_GENERIC_GPIO is not set
CONFIG_GENERIC_TIME=y
CONFIG_GENERIC_CLOCKEVENTS=y
CONFIG_MMU=y
CONFIG_NO_IOPORT is not set
CONFIG_GENERIC_HARDIRQS=y
CONFIG_STACKTRACE_SUPPORT=y
CONFIG_LOCKDEP_SUPPORT=y
...

...I could rebuild the Kernel

/proc/filesystems

nodev sysfs
nodev rootfs
nodev bdev
nodev proc
nodev sockfs
nodev pipefs
nodev
anon_inodefs
nodev futexfs
nodev tmpfs
nodev
inotifyfs

nodev devpts
 ext3
nodev ramfs
 msdos
 vfat
nodev nfs
nodev
rpc_pipefs
nodev fuse
 fuseblk
nodev fusectl

I’m not restricted to 2GB

It’s a Linux box

I can cross-compile!

http://www.codesourcery.com/

Prebuilt ARM toolchain

It generates generic ARM
machine code

That’s ok, but not great

I’ll cross compile Perl

1 day of frustration passes

I won’t cross-compile Perl

Crosscompiling Perl
==

Bad Joke

I’ll cross-compile Python

Same bad joke

Maybe I need a native
compiler for ARM

Where do I get an ARM
build farm?

I have a gPhone

It’s not a great build host

I have an N810

It’s not a great build host...

...but it has an important
advantage

apt-get install gcc

N810: Linux 2.6; glibc 2.5

N810 binaries run
unmodified on the Kindle

I built perl in an hour

Sadly, I realized that Python
is a better choice

I also realized that building
on the Kindle works better
than on the N810.

(Version skew in extra
libraries makes things hard)

I tried building gcc on the
N810...

Found Pengutronix /
OSELAS.de

It’s a compiler toolchain
builder.

I built my own crosscompilers
for ARM1136JF-S - Linux 2.6
- glibc 2.5

I used the cross compiler to
compile gcc, glibc (for
proper headers), binutils,
shellutils, dropbear & screen

I cross-compiled nfsmount

I nfs-mounted a disk image
with the compiler

Then I started building more
stuff

I am a Perl Hacker

I believe in the three virtues

Lazyness

Impatience

Hubris

Sometimes, Perl isn’t the
Right Tool

Calibre is the Killer App for
ebook conversion and
management

Lazyness

I like the best tools

The best tools already exist

Calibre has dozens of eBook
format converters.

Why reimplement them?

Hubris

“I can learn enough Python
in a weekend to port this
application to the Kindle”

The downside

Dependencies

Who’s dealt with Python app
dependencies?

No CPAN.

Everything you need is in the
Standard Library.

If it’s not in the Standard
Library, it’s not worth using.

Except when you need it.

They have....

“easy_install”

It’s not so easy

It is very perlish

It does recursive web
scraping to find tarballs on
developers’ web sites.

Most of the deps actually
installed ok.

I just ran the app over and
over until it stopped erroring.

God I miss Perl.

And then we get to the big
problem.

Qt

Calibre’s UI is in Qt

...so its backend uses Qt
because it’s easy

PyQt binds Qt to Python

For Qt for Windows

for Qt for Mac

for Qt for X11

No X11 on Kindle

(Just a Framebuffer)

QtEmbedded

No problem!

No PyQtEmbedded

Finally got Calibre running...

by hacking out components
I don’t need.

It was good enough to try to
convert a trivial ebook.

It took 12 hours...

...after I built swaputils and
gave it 256MB of swap

So what was it doing?

HTML → Mobipocket
converter

With a full CSS engine

It visits every DOM
element...

and computes CSS styles to
convert them to trivial HTML
3.2...

...twice.

Lazyness, Impatience,
Hubris can all help here.

Help me Larry-wan.

Very few CSS rules really
matter.

The Kindle supports very
little HTML.

It mostly supports HTML
3.2...just no <pre>

...that’s the only thing the 12
hour CSS engine got us

You can emulate <pre> with
<tt> and

 if tag == 'pre':
 self.inside_pre = 1
 tag = 'tt'

 if prefixname(elem.tag, nsrmap) == 'pre':
 buffer.write('
\n')
 self.inside_pre = 0

 if self.inside_pre:
 text=text.replace(' ',' ')
 text=re.sub(r'(\r\n|\r|\n)', '
\n', text)

Now it runs in 60 megs and
about 10 minutes

So, now I can run code.

Still no UI access.

I don’t really want to hack
Java GUI code.

And where could I plug my
custom UI into the Kindle’s?

I don’t want to break
Amazon’s UI.

Oh hey.

There is an application I
could replace with
something custom...

But really, I don’t want to.

Sure, I could decompile.

It’s obfuscated.

It’d be annoying.

If I built UI, I’d have to
maintain a UI.

And users can break a UI.

No buttons
=

Less to screw up

But I have this ebook
converter.

I do want to let users
convert books.

What to do?

nodev sysfs
nodev rootfs
nodev bdev
nodev proc
nodev sockfs
nodev pipefs
nodev
anon_inodefs
nodev futexfs
nodev tmpfs
nodev
inotifyfs

nodev devpts
 ext3
nodev ramfs
 msdos
 vfat
nodev nfs
nodev
rpc_pipefs
nodev fuse
 fuseblk
nodev fusectl

Inotify blocks on filesystem
events.

pyInotify lets me get at fs
events easily.

class InotifyListener (threading.Thread):
 global cv
 def run (self):
 global conversionQueue

 wm = WatchManager() # Watch Manager
 mask = IN_MOVED_TO | IN_CREATE # watched events

 p = PTmp()
 notifier = Notifier(wm, p)
 wdd = wm.add_watch('/mnt/us/documents', mask, rec=True)
 notifier.loop()

It works great for downloads

Copies over USB didn’t
trigger inotify events.

It’s probably something
fuse-related.

I went for the cheap hack.

When you eject the Kindle, it
generates a DBus event.

class DbusWatcher (threading.Thread):
 global cv
 def run (self):
 global conversionQueue
 cmd='/usr/bin/dbus-monitor --system'
 pipe = subprocess.Popen(cmd, shell=True,
stdout=subprocess.PIPE).stdout
 while 1:
 line = pipe.readline()
 if any(line.find(i) != -1 for i in ['usbPlugOut', 'resuming']):
 for f in os.listdir('/mnt/us/documents'):
 maybe_enqueue_file('/mnt/us/documents/'+f)

What’s next?

Remember config.gz?

I can build a new kernel

...and add back missing
drivers

USB Mass Storage Host

USB WIFI?

What isn’t next?

Reverse engineering Java to
extend the Kindle’s UI

Python, and Shell, I’m happy
to hack for a good cause.

Java is another matter
entirely.

Thanks!

I had a big finish planned.

I was going to build and
show off a manga converter.

(for .cbz format books)

So I downloaded a .cbz.

...and copied it to the Kindle...

...and I saw this...

The best hacking
is no hacking.

Thanks!

